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The spectral density of states for electrons in disordered 8 brass has been determined by calculating the
T matrix for the system. The geometric approximation introduced by Beeby has been invoked to sum the
infinite series expressing the total 7" matrix in terms of the ¢ matrices for the individual scatters. Beeby’s
procedure is extended to take account of the short-range order present in the alloy, and it results in the
introduction of incomplete Green’s functions of the form previously used by the authors in another approach
for calculating the electronic spectrum of disordered alloys. Information about the short-range order ob-
tained from neutron-scattering measurements is used to evaluate the incomplete Green’s functions as well as
the crystal potentials for the constituents. Model potentials of the form used by Soven are employed to
facilitate the calculation of the ¢ matrices. The distinction between the constituents is retained. We have
computed the spectral density of states for 8 brass at the symmetry points T', H, P, and N of the Brillouin
zone. The results are used to predict the flatness of the Fermi surface, which compares well with the specu-
lative interpretation by Moss of the neutron-scattering data.

I. INTRODUCTION

HERE have recently been several attempts to
calculate the electronic structure of disordered
alloys. The simplest approximation, which has been
applied to both @ and 8 phases of brass (Cu-Zn)'? as
well as Ag-In alloys,? consists in replacing the disordered
alloy by a hypothetical perfect crystal, wherein each site
carries a potential equal to the average of the potentials
of the constituents. The virtual-crystal approximation
(VCA), as this is called, provides a qualitative explan-
ation of results of optical-absorptivity measurements
but fails to give a satisfactory detailed agreement. An
attempt was made to see if the use of improved po-
tentials, which took account of the occupation proba-
bilities of the lattice sites by the two types of atoms in
a binary alloy, could render the VCA more useful. It
was found that this improvement in the potential de-
stroyed the fortuitous agreement with optical data
achieved before for « brass.? In another approach to the
disordered-alloy problem, a generalization of the Green’s-
function method was proposed by the authors and ap-
plied to « brass® and the disordered CusAu.® The model
was found to give a fairly satisfactory description of
both the conduction and the d bands. In default of any
exact mathematical solution to the general problem, it
was made plausible that the configurationally averaged
wave function satisfies a Bloch-type condition. By
making the further approximation of using the wave
function for an averaged potential as the configura-
tionally averaged wave function, one could obtain a
secular determinant similar to that for the Kohn-
Rostoker (KR) method” for the case of a diatomic
lattice.
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The above-mentioned approaches have the common
weakness of associating a unique momentum with a
given eigenstate, thus assigning to it an infinite lifetime.
But it is clear that k is no longer a good quantum
number for electrons in a disordered alloy. In such
systems, the relevant and important physical quantity
is the spectral density of states p(£,k). For the case of
perfect lattice, this has a §-function peak. As a result of
the disorder, the peak is broadened and its width would
indicate the departure from the Bloch-wave character
of the alloy wave function. An investigation which bears
on this aspect has been made by Soven,® who has ap-
plied the averaged -matrix approximation to « brass to
calculate the spectral density for states of wvarious
symmetries.

The purpose of this paper is to present a f-matrix
approach and apply it to the disordered substitutional
binary alloy 8 brass. In this method, the distinction
between the / matrices of the constituents is retained,
and no hypothetical scatterer having an averaged ¢
matrix need be assumed. The formalism relies heavily
on the work of Beeby? and the calculation utilizes the
model §-function potential of Soven,® and the incomplete
Green’s functions of Pant and Joshi.’ The method takes
account of any short-range order present in the alloy,
and uses the short-range-order parameters to calculate
the potential at each site, as well as the incomplete
Green’s functions mentioned above. There are two basic
approximations invoked in this analysis:

(1) The first approximation is the use of muffin-tin
potentials where the potential at each site can be ap-
proximated by a spherically symmetric distribution is
within nonoverlapping spheres around each ion, and
assumed constant in the interstitial region. This approxi-
mation may be relaxed at the cost of increased compu-
tational effort. In a recent work, Rudge!® has shown that
the augmented-plane-wave (APW) method for band-
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1 DENSITY OF STATES IN DISORDERED g BRASS

structure calculations, which was conventionally re-
stricted to the muffin-tin potentials, can be extended to
take account of the nonspherical contributions in the
interior and nonconstant potentials in the interstitial
regions. In a similar manner, the present method may
also be extended beyond the muffin-tin approximation.
It is known from band-structure calculations, that the
muffin-tin approximation is quite satisfactory for most
cases,'%! and therefore we decided to confine the present
calculation to muffin-tin potentials.

(2) The second simplification introduced here is the
“‘geometric approximation” discussed by Beeby.? This
approximation enables us to sum the infinite series
expresssing the 7" matrix for the system in terms of the
¢ matrices for the individual scatterers. For an ordered
alloy, this approximation yields the exact result, and
for a disordered alloy, one could improve upon it by
including higher-order terms.

The method has been applied to discrdered 8 brass
to determine the spectral density for states of various
symmetries. The results of the experimental measure-
ments of the short-range-order diffuse scattering are
available for this alloy.’? The band structures of the
constituents are well known, and some theoretical
studies have been made for the a phase."*5 However,
B brass has been theoretically treated only by the virtual-
crystal approximation.? These considerations prompted
us to study the spectral density of states for disordered
B brass at a few symmetry points.

In Sec. II we discuss the formalism which gives the
expression for the spectral density of states by extend-
ing Beeby’s work to take account of short-range order.
Section III is concerned with the construction of the
muffin-tin potentials and we also introduce there the
model §-function potentials to facilitate the calculation
of the ¢ matrices. The details concerning the applica-
tion of the method to 8 brass are presented in Sec. IV.
The results are discussed in Sec. V, which also relates
this theory to other methods of exploring the one-elec-
tron spectrum in disordered alloys.

II. FORMALISM

The spectral density of states for noninteracting elec-
trons in the presence of a system of potentials has been
shown by Beeby and Edwards®® to be

1
p(ER)=— —— Im< / T (x,x")e~ (X—x'>dxdx’> ,
(E—k»)rQ

which we write as
p(ER)=— ——Im{(T'(k)). 1
(£.k) ( 2y (7)) ¢))
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In these expressions, 2 is the volume of the assembly,
the angular brackets denote an average over the dis-
ordered system of potentials, and Im indicates the
imaginary part of the expression that follows it. The
T function for the assembly is given by the series

T=Y tet+ Y taQols+ X taSolsGotyt---, (2)
« a# B

a#B, By

where {, is the ¢ function corresponding to the potential
V. at the ath site and is defined by

la(x%y) =V a(x)8(x—y)+ / Va(X)Go(x—2)ta(z,y)dz.

Go(x—z) is the free-particle propagator. In order to
obtain a matrix representation, we make angular-
momentum expansions of the ¢ functions. It is conven-
ient to use the real spherical harmonics Y1 (%) of the
angles of x, where L is a compound subscript denoting
both ! and m, so that

Hxy)= ZL) W(z,y)Y LBV L(y)- 3)

In the case of a disordered binary alloy, any site may
be occupied by either of the two types of atoms. We use
the superscripts 1 and 2 to denote the two types of
atoms. The 7" matrix series may then be split into four
parts, such that

r= ¥

§=1,2,8/=1,2

788", 4)
We have
=Y 10+ T tiGls+ ¥

a# B a#B,BFy

T2 = Z talgotﬂ2+ Z taIQOtﬂgot‘YL}" ]

a#B a# B, By

=% tGols'+ 2

o arf, Bty

T2=3 124 T G+ T

a# B a#B, 87y

talgﬂtﬂgot'yl_}_ ]

1a2GotsGoly - - -, ®)
ta?GotgGoly2+ - - -

Here 2,8 is the ¢ function corresponding to the potential
V8 at a. TS8' corresponds to that part of the total T
function in which the electron scatters, first, off an
atom of the $th type, and lastly off one of the §'th type.
The intermediate scatterers may be of either type and are
represented by #’s without any superscript in the above
series.

The Fourier transformation 7'(k) implied in Eq. (1)
may now be carried out separately for each term of the
series (5). The first term of 7% or 72 gives

| Sty

= (47)*Ng § / Ju(kx) ja(ky)t:8 (w,y) 2%
XyrdyY L (R)YV k), (6)
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where Vg is the number of potentials of the type 8. The
calculation of a general term involves angular integra-
tions of the type

(Saﬁ%’)LLr:il’_l/YL(?)QO(Y_Z—i_R"‘_Rﬂ)
Xe ik RaRRY 1,(2)dQ,dQ,, (7)

besides the radial integrals involved in # and a sum-
mation over L. Rq, Ry, etc., denote the positions of the
a, B, and other sites. A typical term in series of Eq. (5)
therefore contains products of the form

(Z Saﬂss/ Z Sﬁ’yslsl" .. Z S‘pwsulsnn‘ . ')LL',

BFa v#B wFY

where the superscripts on S take the values 1 and 2,
depending on the type of atoms at locations specified
by the subscripts. The problem is to sum an infinite
series with terms of this nature, and then to average
such sums over all configurations. Beeby presented a
method of tackling this problem by replacing 5,88’
=3 pa SapS® by some 588’ which does not depend on a.
The series in Eq. (5) then become a geometric series.
This approximation is therefore referred to as the
“geometric approximation” and may be readily seen to
be exactly true for a perfectly ordered alloy. We then
have

1
(8880 1p=— 2 (Sas®)rrr

N§ p+#a
1 .
=— 2 [V ()G (y—2+Ra—Rp)
ATS' BFa

Xe k- Ra=RR Y, (2)dQ,dQ,. (8)

Th=(4x)N1 3 V(&)Y 1 (R) {11 (%, k)o [ (kyx)
LL’

X(G+ ¥ GSr8Gs+ ¥

§=1,2

T12= (47)2N, ZZ ViRV (K[ (k) (G2 Y G886+ 3

§=1.2

PANT AND S. K.

JOSHI 1

Our formalism up to this stage is essentially identical
to that of Beeby. Beeby proceeds further by relating
the lattice sums to the Kohn-Rostoker Green’s func-
tions. In this paper we take account of the short-range
order while summing over the lattice sites. We can
identify D" gxe Go(y—Z+Ro—Rp)e ™ Ra—Re) in Eq. (8)
as the incomplete Green’s function of Ref. 5, with the
B=a term omitted. This may therefore be expanded in

terms of the spherical Bessel functions 7, as done in
Eq. (16) of Ref. 5,

S Go(y—2+R,—Ry)e* R R

B=a
=2 "G fi(ky) ju (k@) VL (§)V 1 (2).
LL’
Therefore,
(588 Jor =G-8 ju(ky)ju(xz), )

where k=+/E if E>0 and in/—E if E<0; and G118’
are related to the Brr88" of Ref. 5. The G188 are
independent of y and z and are collectively denoted by
G88'. The radial y and z integrals now involve only Bessel
functions and the radial ¢; functions. Their most general
form is

18(p,q) = / Ji(px)t8 (x,y) ju(gy)a*dxy*dy,  (10)

with p and ¢ taking values of % or k. We use 78 to denote
18(k,x). In this notation, we have for the series of
Eq. (5)

G'878GSS'78'GS - ) (k,k) ]}

$=1,2,8’=1,2

G1878GSS 718G+ (k) Jerr, (1)

§=1,2,8'=1,2

with similar expressions for 7% and 7%. On performing the summations, we get

= (rPN: X V&) Ve G0u (b k)ons {8 (k) MG+ (1 G273 (GEr) GV ] (k) 1],
LL

o= (apNs 2 Vo)V 1 QL ()M [ (1=G2r) (GPr) " GEIR (k) s

T2 and T% are obtained by interchanging the super-
scripts 1 and 2 in the above expressions. M1 and M are
defined by the following expressions:

]‘[1= (1 _G22T2) (Gl?TZ)——l (1 __GllTl) _G21T1 s

13

M2= (I_GIITI) (G21T1)_1(1_G22T2)_G1272. ( )

The above set of Egs. (10), (12), and (13) enable us to
determine the spectral density of states. The only
problems we face at this stage are the calculation of

(12)

the matrix elements of GS8’ and of the evaluation of the
¢t matrices. It is clear that the calculation of GS8$’
requires a detailed knowledge of the relative positions
of the atoms. In the case of a disordered alloy, the short-
range-order parameters may be used to estimate an
average distribution pattern of the constituents, thus
enabling us to calculate the GS8'. A complete discussion
of the use of the short-range-order parameters to
determine the matrix elements of GS8’ has been given
in Ref. 6. The approximation introduced in order to
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calculate these matrix elements is that the short-range
order extends only up to a certain neighborhood, beyond
which the occupation probabilities are those of a ran-
domly occupied lattice. In terms of the Cowley short-
range-order parameters a; this means that a;=0 for ¢
greater than a certain value, say ¢. Then this ¢ is referred
to as the ‘“order of significant neighborhood.” The
matrix elements of G88” are given by

G888 =47 Y. D188'Crpipr.

L

(14)

Here Crr/1+ are related to the Clebsch-Gordan coeffi-
cients and

D188 =mgDy+ik(4m) " 2mgdrotri~t Y e Ry
v<o

X[ (R,) —iji(kR,)JV L(R,)[ PSS’ (R,) —ms’]. (15)

In this expression, g is the atomic concentration of
atoms of §'th type, and the Dy, without superscripts are
the familiar structure constants of the ordered crystal
which occur in the KR method. #; is the spherical
Neumann function. P88'(R,) denotes the probability
of finding an atom of the 8'th type at a position R, with
respect to an atom of the $th type. This probability
can be expressed in terms of the short-range-order
parameters as discussed in Ref. 5. The summation in
Eq. (15) runs through a neighborhood ¢ in the direct
space, and the prime on the summation indicates that
the term with y=0 is to be omitted. The 8z, term is
introduced to compensate for the fact that the calcu-
lation of Dy, for the perfect lattice does not exclude this
term. The matrix elements of G838’ are then directly
obtained from Egs. (14) and (15). We discuss the calcu-
lation of the ¢ matrix in the following section.

III. POTENTIALS AND EVALUATION
OF ¢t MATRIX

It was shown in Ref. 5 that the muffin-tin potentials
(V8(r)) for the constituents in the alloy could be ob-
tained by overlapping the atomic potentials from
neighboring sites, taking due account of the probability
of the occupation of a site by a given type of atom. In
order to facilitate the calculation of the ¢ matrix,
Soven?® suggested the use of model é-function potentials
in place of the muffin-tin potentials. The §-function
potentials were chosen to be of the form

(Ve(x,x))=2 YL(ﬁ)a(x_:mt)bﬂa(xl—rmc)

Tm¢ Ymi

V.(&), (16)

where 7., is the radius of the muffin-tin sphere and ;8
are energy-dependent potential amplitudes. The use of
such potentials in the ordered lattice has been pre-
viously discussed by Slater.* We know from the forma-

14 J. C. Slater, Phys. Rev. 145, 599 (1966).
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lisms of the APW and KR methods for the perfect
lattice and the extension of the KR method to disordered
alloys,’ that the potential enters the final formulas only
via the logarithmic derivatives of the radial wave
function at the radius of the muffin-tin sphere. A suitable
method for determining v;8(E) is then to require it to
yield the same logarithmic derivatives as generated by
the actual potential. We then have

08 (E) =rmiLyi8 (B) = kji (rmi)/ ji(erm) 1, (17)

where 7;" is the derivative of the Bessel function and
78 (E) is the logarithmic derivative of the radial wave
function (for angular momentum / and energy % at the
sphere radius 7,.) engendered by the actual muffin-tin
potential (V$(r)). The angular momentum components
of the ¢ matrix can then be written as

6(x—7mz) 5(x/—7mt)
il(xyx,) = ’
Ymt 7’mL2

(18)

so that

(19)

where gi=G(7mi,”n:) is the Ith component in the angular
momentum representation of G(x—x’),

h=v(1—vg)™,

Gi(wx") = k(e [ma(kws) —igi(xas) ]

Here x< is the lesser and x> is the greater of x and «'.
The introduction of the §-function model potentials,
then leads to the following simple expression for the
matrix elements (10) of ¢

t(p,@) = L ji(prmd) Ji(grms) . (20)

These expressions completely define 7°88(k) in terms
of GS8 and the logarithmic derivatives of the radial
functions at the muffin-tin radius. The spectral density
of states is then obtained from

p(Ek) = — m ¥

8§=1,2,8’=1,2

788’ (k). (21)

(E—12)rQ

Soven?® has shown that the use of energy-dependent
model potentials necessitates the use of a correction

factor
d?)ls (E)

dE

with Eq. (21). When we compared the results with and
without the use of this correction factor we found that
the shapes of the p(¥£k)-versus-£ curves, do not change
perceptibly and there is no noticeable difference in the
peak positions. However, all results presented or
discussed here are for p(Ek) calculated with the cor-
rection factor.

IV. APPLICATION TO (3 BRASS

The x-ray diffuse scattering from 3 brass has not been
observed experimentally, because of the similarity in
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F1c. 1. Charge Z(r) = —7V (r)/2 for copper and zinc in disordered
B brass at 75°C above the transition temperature.

the x-ray scattering factors of the constituents. The
neutron-difiraction technique has been successfully
employed to observe the short-range-order diffuse
scattering in this alloy. Walker and Keating!? found
that it was not possible to assign unique values to the
short-range-order parameters in 3 brass, because of the
long-range nature of the short-range order. They
therefore compared the measured scattering with its
values calculated from various theoretical approaches
and showed that (for 75°C above the critical transition
temperature) the short-range-order parameters could
be given by a Zernike-type expression

la(r) | =0.540¢0-400 /3 (22)

where 7’=27/a, and ¢ is the lattice constant. We have
used this expression to calculate the short-range-order
parameters employed in the calculation. The calculation
of the muffin-tin potentials for the constituents and the
matrices G88' are easily carried out as discussed in Refs.
5 and 6. Although the disordered 8 phase is found for a
range of Zn concentrations in the vicinity of the 50-50
stoichiometry, we have chosen the concentrations of Cu
and Zn atoms to be equal. The lattice parameter was
taken to be 2.9907 A 15 or 5.6514 in atomic units. The
radii of the muffin-tin spheres for Cu and Zn were
chosen to be equal, and slightly less than the radius of
the inscribed sphere. The radius of the inscribed sphere
is 2.44724 and the radii of the muffin-tin spheres were
both chosen to be 2.41484 in atomic units. The constant
part of the muffin-tin potential was chosen to be the
average of the Cu and Zn potentials at the sphere radii.
We found this value to be —0.9152 Ry. In order to

15 W. B. Pearson, 4 Handbook of Laitice Spacings in Meials
and Alloys (Pergamon Press, Ltd., London, 1958), p. 177.
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determine the muffin-tin potentials for Cu and Zn, the
required overlap was carried through tenth neighbors.
While calculating the GS8', the order of significant
neighborhood ¢ was also set equal to 10. The actual
potentials for Cu and Zn employed in the calculation
are plotted in Fig. 1.

We have carried out numerical calculations of the
spectral densities for states at the symmetry points T,
H, P, and N of the Brillouin zone. We have chosen to
calculate what Soven calls the reduced spectral density,

p(EK) =‘I{. p(E,k+K),

where K is a reciprocal-lattice vector, and k is confined
to the first Brillouin zone. This reduced spectral density
should be convenient for comparison with the energy-
versus-momentum curves of an ordered crystal, which
are also defined modulo a reciprocal-lattice vector. The
curves for the reduced spectral density 5(#,k) plotted
against F for some of the states are shown in Figs. 2
and 3 and the peak positions in g(¥,k) for states at the
symmetry points I, #, P and N are tabulated in Table
I. The abscissa in these curves is a dimensionless
parameter e in terms of which, the energy is given by
E= (47%*/a*)e. The ordinates give p(F,k)a?/ (4r)2.

V. DISCUSSION

Beeby'®, and later Ziman'” also, have shown that for
a perfect lattice, the 7-matrix approach yields the same
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Fic. 2. Spectral density of states™for I'ss» and T'1s (d-like) states
in B brass, plotted as a function of energy.

16 J. L. Beeby, Proc. Roy. Soc. (London) A279, 82 (1964).
17 J. M. Ziman, Proc. Phys. Soc. (London) 86, 337 (1965).
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relationship between E and k as the KR method. It
was therefore felt that it may be possible to find a
connection between the method of the present paper
and the extension of the Kohn-Rostoker method to
disordered alloys® (P]). In particular this would indi-
cate the validity of some of the assumptions which
were simply “made plausible” in that paper. Of course,
the PJ method cannot be compared to the present
T-matrix approach in so far as the former neglects
the diffuseness in the eigenstates. But we could correlate
the peaks in p(Ek)-versus-E curves and the eigen-
values determined by the PJ method. The sharpness in
the spectral density for 8 brass from this calculation
and in « brass from Soven’s work, indicates that talking
in terms of Bloch-type states is not entirely meaningless.
We may therefore regard k as a fairly good quantum
number and deal in terms of eigenstates of P]J method,
provided we do not attempt a very detailed interpre-
tation of experimental chservations. Examination of
Egs. (12), (13), and (15) shows that, in general, the
peak of 5(Ek) and the zero of D(Ek), the secular
determinant of the PJ method are not correlated. How-
ever, in the particular case of a randomly occupied
lattice, the peak in the p(Z£k) would be given by
det| M| =0, which turns out to be the same as D(E k)
=0. In other words, the PJ method and the present
method are equivalent for the case of randomly oc-
cupied lattice. We also know that for such a system,
the geometric approximation reduces to the averaged
t-matrix approximation employed by Soven. This
accounts for the similarity in the results'® obtained by
PJ and Soven for the case of a brass, for which there is
no short-range order. The small discrepancies that do
exist may be attributed to the differences in the po-
tentials employed in the two calculations.

We now compare the results of the present calculation
with the experimental data. Most of the experimental
techniques employed for probing the electronic states
in the ordered lattices require long electron relaxation
times and are therefore not applicable to the disordered
alloys. Recourse has therefore been taken to indirect

TasLE I. Positions of peaks in p(E,k)-versus-E curves for
states of various symmetries in 8 brass. All energies are in Ry and
relative to the muffin-tin zero, (V,)=—0.9152 Ry.

State Energy State Energy
I 0.018 Py 0.158
Tao5r 0.160 Py 0.162
T2 0.180 Py 0.896
Hyp 0.124 P 0.985
Hys 0.198 N, 0.120
Hys 1.051 N, 0.141
Hi, 1.333 N, 0.165
H; 1.693 Ny 0.183
Erp (Cohen-Heine 0.511 N3 0.204
method) Ny 0.404
N, 0.571

18 See Table II of Ref. 5.
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Fi1c. 3. Spectral density of states for Ny (p-like) state in 8 brass,
plotted as a function of energy.

methods such as optical properties, positron annihila-
tion, and the short-range-order diffuse scattering. In a
recent work, Moss® has conjectured that nonspherical
pieces of the Fermi surface may give rise to a detectable
singularity in the intensity of diffusely scattered x rays,
electrons, or neutrons. He applied the idea to the
neutron-scattering curves for § brass, measured by
Walker and Keating,”? and concluded that along (111),
kr=0.74 of the I'-P distance. In order to estimate kr
from our limited calculation we use the Cohen-Heine
model,? characterizing the band structure in terms
of the states I'y, N1, and Ny. An effective mass can
be defined for the I''— Ny band and the Fermi energy
obtained. The intersection of Ep with the I''—P4
band gives kr=0.75 of the I'—P distance. The free-
electron value for the ratio is 0.82, and the virtual-
crystal approximation gives the wvalue? 0.78. Our
calculations thus indicate that the Fermi surface
normal to (111) is flatter than that given by the
VCA. The flatness calculated by us compares surpri-
singly well with Moss’s analysis of the neutron scatter-
ing data. We cannot give much credence to Moss’s
value, as his result is subject to a number of uncertain-
ties. The diffuseness in the Fermi surface as a result of
the disorder should erode the singularity and render its
observation difficult. I't is known? that eigenfunction for

1S, C. Moss, Phys. Rev. Letters 22, 1108 (1969).
2 M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1961).
2 P, Soven, Phys. Rev. 178, 1136 (1969).
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wave vectors about half way to the zone edge depart
seriously from Bloch waves and the Fermi surface
would appear to be a concept of limited utility in this
region. Besides, the experimental data used by Moss is
of uncertain accuracy near the region of interest. We find
the Ny —N;1 gap to be 2.2 eV, whereas the value due
to Amar, Johnson, and Wang for this gap is 1.5 eV. Thus,
our calculation gives a Fermi surface for which the de-
parture from sphericity is greater than that given by the
virtual-crystal approximation. In order to carry this
comparison further we have calculated the Ny —N; gap
following the method presented in this paper but using
atomic potentials for copper and zinc. These were the
potentials used by Amar, Johnson, and Wang? in their
VCA calculation. Our calculation gives a value 2.4 eV
for the Ny — N1 gap. Thus the energy gap for the dis-
ordered alloy also is sensitive to the choice of potential,
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but it is clear that striking difference in the values of
Nyp—N; gap given by the present method and by the
VCA approach originates from the differences in the
formalisms. The virtual-crystal approximation is an
over simplification of the alloy problem and the present
approach may be regarded as in improvement in the
sense that it recognizes the distinction between the
constituents, takes account of the short-range order, and
incorporates the lifetime effects for the electronic states.
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There are two widely used theories of ultrasonic attenuation in the Akhieser (27<1) regime. Woodruff
and Ehrenreich used the Boltzmann equation and found that the attenuation was a function of the specific
heat of the thermal phonons. Mason and Bateman obtained the fundamentally different result that the
attenuation also involved the thermal energy. It is shown here that the Mason-Bateman theory contains
both mathematical and conceptual errors and that its apparent agreement with experimental data on

Si and Ge is fortuitous.

I. INTRODUCTION

LTRASONIC attenuation in dielectric single
crystals is usually dominated by interaction of the
ultrasonic wave with thermal phonons. If Q7<1 (where
Q is the radian frequency of the ultrasonic wave and 7 is
a typical thermal-phonon relaxation time), the attenua-
tion occurs via a mechanism first described by Akhieser.!
Because of the anharmonicity of the medium, the strain
produced by the sound wave modulates the frequencies
of the thermal-phonon modes. The equilibrium popula-
tions of these modes are therefore modulated also.
However, the actual populations, since they require a
time 7 to readjust to the new equilibrium conditions,
lag in phase behind the driving sound wave. The
reestablishment of equilibrium is an entropy-producing
process with a consequent absorption of energy from
the sound wave.
There have been a number of theoretical treatments
of Akhieser damping.'~8 The most thorough is the work

1 A. Akhieser, J. Phys. (U.S.S.R.) 1, 277 (1939).

2T, O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1533
(1961).

3 H. E. Bommel and K. Dransfeld, Phys. Rev. 117, 1245 (1960).

of Woodruff and Ehrenreich? who obtain an expression
for the attenuation 4 (on a Debye model with Qr<1)
in the form
A=BCyTv.w*Q7/3pv® (nepers/unit length), (1)
where Cy is the specific heat per unit volume, T is the
absolute temperature, v,, is some average Griineisen
constant, p is the mass density, v is the ultrasonic
velocity, and B is a numerical factor of order unity
which depends on the form assumed for the local
equilibrium distribution of thermal phonons.2 The
precise value of 3 is usually not important since v,y is
usually treated as an adjustable parameter.
A different result was obtained by Mason and
Bateman,” who made the important contribution of
considering the anisotropy of the Griineisen tensor as

4 P. G. Klemens, in Physical Acoustics, edited by W. P. Mason
(Academic Press Inc., New York, 1965), Vol. III B, pp. 228-232.
5 S. Simons, Proc. Phys. Soc. (London) 83, 749 (1964).
( 6 }*;) Prohofsky, IEEE Trans. Sonics Ultrasonics SU-14, 109
1967).
7W. P. Mason and T. B. Bateman, J. Acoust. Soc. Am. 36, 644
(1964). See also W. P. Mason in Ref. 4, Vol. III B, pp. 256-267.
8 H. J. Maris, Phys. Rev. 175, 1077 (1968).



